
Tengu: an Experimentation Platform for Big data
Applications

Thomas Vanhove, Gregory Van Seghbroeck, Tim Wauters, Filip De Turck, Brecht Vermeulen, Piet Demeester
Department of Information Technology, Ghent University - iMinds

Gaston Crommenlaan 8/201, 9050 Gent, Belgium
Email: thomas.vanhove@intec.ugent.be

Abstract—Big data applications have stringent service require-
ments for scalability and fault-tolerance and involve high volumes
of data, high processing speeds and large varieties of database
technologies. In order to test big data management solutions,
large experimentation facilities are needed, which are expensive
in terms of both resource cost and configuration time. This
paper presents Tengu, an experimentation platform for big data
applications that can automatically be instantiated on GENI (US
federation of testbeds) and Fed4FIRE (EU federation of testbeds)
compatible testbeds. Tengu allows for automatic deployments of
several data processing, storage and cloud technologies, including
Hadoop, Storm and OpenStack. The paper discusses the Tengu
architecture, the Tengu-as-a-service approach and a demonstra-
tion of an automated instantiation of the Tengu experimentation
suite on the Virtual Wall, a large-scale Emulab testbed at the
iMinds research institute in Europe.

I. INTRODUCTION

Big data applications require scalable and fault-tolerant
frameworks to handle the high volumes of data and guarantee
high processing speeds. A plethora of technologies have been
invented to support efficient analysis, processing and storage
of big data sets for many different scenarios [1], [2], [3], [4].
Nevertheless, these technologies are often cluster-based in or-
der to meet the scalability and fault-tolerance requirements of
the applications. Testing these applications therefore requires
large experimentation facilities. These setups are expensive in
resource cost, but the clustered setup of the majority of these
technologies complicates and increases the configuration time.

We propose Tengu, a new experimentation platform de-
ployed on the Virtual Wall. The iLab.t Virtual Wall facil-
ity1, based on the Emulab2/GENI platform, is a generic test
environment for advanced network, distributed software and
service evaluation, and supports scalability research. Tengu
provides an automatic setup and deployment of big data
analysis frameworks (e.g. Hadoop and Storm), SQL data bases
(e.g. MySQL), data stores (e.g. Cassandra and ElasticSearch)
and other cloud technologies, such as OpenStack. Furthermore,
the platform offers several unique features: the Lambda archi-
tecture [5], which combines batch and stream big data analysis
frameworks, and live data store transformations [6].

Many ground-breaking novel applications and services
cover multiple innovation areas. Therefore, the need for these

1http://ilabt.iminds.be
2https://www.emulab.net

solutions to be tested on cross-domain experimentation facil-
ities with both novel infrastructure technologies and newly
emerging service platforms is rising. The Fed4FIRE project3

aims at federating otherwise isolated experimentation facili-
ties from the FIRE4 community in order to foster synergies
between research areas [7]. As the Virtual Wall facility is part
of this federation, the Tengu platform is interconnected with
other testbeds offering wired, wireless and sensor networks,
SDN and OpenFlow technologies, cloud computing and smart
city services, which ensures that researchers can perform
experiments across the boundaries of the big data area.

Fed4FIRE offers various forms of federation. While testbeds
can be merely associated with the federation (i.e. listed on the
website with links to contact information, documentation and
tutorials), the primary options are to be integrated through
advanced or light federation.

• Light: access to the testbeds services is realized by
exposing a Web-based API. This option does not allow
full control over the individual testbed resources, but
ensures unified access to experimenters.

• Advanced: the testbed is fully integrated in the federation
so that experimenters can interact with their experiment
during all stages of the experiments life cycle (resource
selection, instantiation, control, monitoring, etc.). This
option requires the implementation of the Federation
Aggregate Manager (AM) API on top of the testbed.

Tengu is federated through the light option. Its RESTful API
for example allows for the instantiation of the platform through
simple HTTP POST commands. Tengu in its turn relies on the
same client tools offered by Fed4FIRE. The POST command
to instantiate the platform creates an RSpec (a description of
the requested resources), which is then deployed using the jFed
client tool. As a consequence, the same tools can be used to
for example visualize the setup through the jFed GUI 5 and
interact with the underlying resources, if required.

The remainder of this paper is organized as follows: Sec-
tion II illustrates the architecture of the Tengu platform,
consisting of the core platform and its front end. The service
platform, containing the RESTful API, is detailed in Sec-
tion III. Section IV lays out a use case of the Tengu platform

3http://www.fed4fire.eu
4http://www.ict-fire.eu
5http://jfed.iminds.be/

Fig. 1. General overview of the Tengu architecture

related to social network monitoring, followed by a description
of the demo in Section V. Finally, related work is discussed in
Section VI, while Section VII concludes this paper and offers
several insights towards future work.

II. ARCHITECTURE

The overall Tengu architecture has two distinct stages as
illustrated in Figure 1. The first stage consists of the front
end which translates RESTful method calls from the exper-
imenters into an RSpec of a new Tengu core instantiation.
Depending on the types of nodes defined in the RSpec, it
can then be deployed by jFed on several testbeds of the
Fed4FIRE federation. Once the deployment is finished, the
second stage starts. The configuration management software
makes sure all different components are correctly configured
and interconnected, resulting in a new full-featured Tengu core
setup.

In the following subsections we will dive deeper into the
different stages and the involved architectural components.

A. Tengu core setup

The core setup of Tengu can again be divided into three
main parts: a computational unit, data stores managed by
Tengu and the application specific resource pool. An Enter-
prise Service Bus manages the communication between these
different parts. It acts as a middleware software shielding the
different components from each others specific implementation
and routes data and messages between them.

1) Lambda architecture: The computational unit that is
provided to all users of the Tengu platform is based on the
concept of the Lambda architecture [5]. This concept, coined
by Nathan Marz, combines two current approaches to big
data analysis: batch and real-time or stream data processing.
Batch data analysis frameworks analyze entire big data sets
and create a view on this data set based on the implemented
algorithms. However, specific types of applications, processing
and analyzing data from sensor networks, social media, and
network monitoring applications, generate data streams, caus-
ing results provided by a batch analysis to be always out of
sync with the real-life application as new data is continuously
created during the batch analysis run. This cultivated the need
for (near) real-time or stream processing [3]. These stream

Fig. 2. Conceptual overview of the Lambda architecture

processing technologies provide incremental updates to their
results whenever new data is received, but in doing so they
lack a general overview of the entire data set.

The Lambda architecture, depicted in Figure 2, thus is a
specific hybrid approach for big data analysis leveraging the
computing power of batch processing in a batch layer with
the responsiveness of real-time computing system in a speed
layer. The batch layer provides a batch view on the entire data
set, while new data is instantly analyzed by the speed layer,
yielding a speed view on the most recent data. Additionally,
new data is also added to the data set so it can be analyzed by
the batch layer in a subsequent run. Once this run is completed,
the batch view is updated while any redundant information
is removed from the speed view. Querying the views of an
applications big data set will therefore always include the
aggregation of information in both the batch and speed view.

This entire computational unit is provided as a service to the
applications on the Tengu platform. However, it is important to
note that while the entire Lambda architecture can be provided,
both batch and speed layer can also be used separate of
each other. In this context the ESB manages the coordination
between both layers, routing messages to the correct layer and
data stores.

2) Tengu managed data stores: In the big data domain,
technologies for storing data are designed aimed to scale
horizontally, providing read/write operations distributed over
many servers. This yields a new category of storage systems
called NoSQL data stores [4]. As many different data stores
exist today, each with their own (dis)advantages in specific
scenarios, the Tengu platform offers many different data store
solutions. This allows applications to use the optimal data store
or even multiple data stores for their data.

Long-term experimental applications tend to evolve with
frequent updates and changing user numbers, rendering the
once optimal data store no longer optimal. Hence Tengu
provides additional features for data stores managed by the
platform, such as a live transformation between two data
stores [6]. This transformation is executed using the same
Lambda architecture provided to the applications. A snapshot
(schema and data) of the original data store is transformed
in the batch layer, while the speed layer transforms any new

queries that arrive after the snapshot is taken. Once the batch
layer is finished, a new data store is set up with the transformed
schema and data, then updated with the queries that were
transformed by the speed layer, after which a turnover is
initiated to use the new transformed data store. During this
entire process, the application still queries the original data
store as to eliminate any downtime.

Normally this process would also require some form of
change in the application code, using the new query language.
However, the ESB shields the application from its data store
and through the continuous transformation of queries in the
speed layer, an application can still query in the language of
the original data store, even though it has been transformed [6].

3) Application specific resource pool: This resource pool
contains several servers for the deployment of the applications
on the Tengu platform. For example, while an application takes
advantage of the computational unit of the Tengu platform,
it can still manage its own data store outside of the Tengu
environment. Additionally, applications might require specific
resources such as a Tomcat server. These can also be provided
in this pool. To better utilize the available infrastructure, the
application specific resource pool is set up as a private cloud.

B. Tengu front end

The Tengu front end consists of a RESTful API component
and jFed. The RESTful API component transforms incoming
user requests for platform instantiations to an RSpec that can
be deployed by jFed on testbeds in the Fed4FIRE federation.
A user in this context is an experimenter who either wants
to experiment with Tengu as a Platform-as-a-Service for big
data applications or who wants to use Tengu to experiment
with an application for big data analysis. The RESTful API has
POST methods to create and deploy new Tengu core instances
and GET methods to receive important information about a
particular instance. It is discussed in more detail in the next
section.

Deployment of the Tengu core instances is handled by jFed,
as is retrieving the state information of the deployment (both
general state as for example the used nodes). Using jFed has
many advantages over using the underlying Fed4FIRE APIs
(Aggregate Manager, User and Slice API). jFed validates the
provided RSpec, not only in formatting errors, but for example
also the used slice identifiers. The tool also combines many
individual API calls into a single operation, e.g. requesting
user information, access control checks, allocating resources
and state handling. The only drawback of working with jFed,
is that it does not come with an easy RESTful interface (or
any other remote interface). To make the interaction with the
Tengu RESTful API easier a RESTful wrapper was created
around the different jFed commands.

III. SERVICE PLATFORM

A. RESTful API

RESTful API 1: POST /tengu/core
This API call allows to asynchronously create and deploy

a new Tengu core instance. It has three mandatory query

parameters: testbed, snodes and hnodes. The testbed
parameter is to specify on which Fed4FIRE testbed the Tengu
core instance has to be deployed. The snodes and hnodes
parameters define the size of the Storm cluster and Hadoop
cluster, respectively. The response of this POST includes a
unique identifier, more specifically a UUID. This identifier
can be used to retrieve the information about the Tengu core
instance that is being deployed.

Listing 1. The message format of a response to a POST call
< t e n : t e n g u . . . >
< t e n : p l a t f o r m>
< t e n : i d>{ uu id}< / t e n : i d>
< l n k : l i n k method=” g e t ” h r e f =” / t e n g u /{ uu id}” />

< / t e n : p l a t f o r m>
< / t e n : t e n g u>

Listing 1 shows response’s message format. Notice the us-
age of XHTML links, this to easily show how an experimenter
can proceed next.

RESTful API 2: GET /tengu/{uuid}
To retrieve information about an individual Tengu core

instance, a user can perform this RESTful method call. The
only thing that has to be provided, is the unique identifier
(uuid) of the instance. The content of the response depends
on the current state of the instance. At the moment we have
three states: unknown (the deployment is not finished yet),
ready (deployment is done and all components are correctly
configured) and failed. If the Tengu core instance is fully
deployed, the response also includes links to the important
Tengu components (e.g. the Hadoop Job history, the HDFS
namenode, the Storm web UI, the OpenStack horizon web
front end, etc.)

Listing 2. The message format of the response for a GET call
< t e n : t e n g u . . . >

< t e n : p l a t f o r m>
< t e n : i d>{ uu id}< / t e n : i d>
< t e n : i d>{UNKNOWN|READY|FAILED}< / t e n : i d>
< l n k : l i n k method=” . . . ” r e l =” . . . ” h r e f =” . . . ” /> ∗
< / t e n : p l a t f o r m>

< / t e n : t e n g u>

The Tengu core setup already includes a wide variety of
technologies (e.g. Hadoop, Storm and OpenStack). By using
the already available RSpec generation process, deployment
with jFed and configuration with Chef, it is very straight-
forward to also provide separate API calls to set up these
individual environments. This allows the user to deploy for
example only an OpenStack environment or a ready to use
Hadoop cluster. The extra API calls are presented in Table I
together with the necessary query parameters. The response
to such a call is the same as shown in Listing 2. Information
requests for these specialized environments also use the GET
request (RESTful API 2), the responses will of course show a
different set of links, depending on the deployed environment.

B. RSpec generation and deployment
The RESTful API is implemented as part of an Enterprise

Service Bus (ESB), more particularly the WSO2 ESB 6. The

6http://wso2.com/products/enterprise-service-bus

RESTful API calls Description
POST /tengu/hadoop deploy a Hadoop cluster
POST /tengu/storm deploy a Storm cluster
POST /tengu/openstack deploy an OpenStack cluster

TABLE I
SPECIAL RESTFUL API CALLS TO SET UP A SPECIFIC CLUSTER. ALL

CALLS HAVE THE SAME SET OF QUERY PARAMETERS: NODES, TESTBED.
THE CALLS WILL DEPLOY A CLUSTER OF SIZE {NODES} ON THE

SPECIFIED {TESTBED}

main reason for choosing this software component is not only
its straightforward manner to define RESTful APIs, but its
routing capabilities. It is easy to configure the ESB so it,
provided certain parameters, execute a particular workflow.
During this workflow it is also possible to change the incoming
and outgoing messages. It is exactly this process that is used
to construct the RSpec.

The first step in the RSpec creation process, starts with a
templated version of the RSpec. The parameters provided with
the POST RESTful call are integrated in this template. For the
variable clusters (currently Hadoop, Storm, OpenStack), the
template has included a placeholder. Using XSLT transfor-
mations this placeholder is changed into correct RSpec node
information.

C. Deployment scripts

The RSpec refers to a script that will install a Chef server
and workstation on a separate node. Chef is a configuration
management software automating the build, deployment and
management of the Tengu infrastructure. All technologies
in the Tengu platform are defined through cookbooks and
recipes, which are basically idempotent step-by-step installa-
tion scripts. Multiple executions of these scripts will therefore
never change the outcome; in most cases a running framework
or service.

Based on the nodes defined in the RSpec, the script deploys
the cookbooks for the corresponding technologies and executes
them on the correct nodes. For example, if a master node is
requested in the setup, together with one or several Hadoop
slave nodes (hnode), a Hadoop cluster will be deployed on
these nodes. If these nodes are not present, the Hadoop
cookbook will not be deployed. This modular approach to
building and deploying the Tengu platform, together with
Chef, allows for a flexible setup of the platform, tailored to
the requirements of the experimenter.

Current available technologies include Hadoop and Storm
for batch and speed layer respectively. Three data stores
are already supported: MySQL, Cassandra and ElasticSearch.
Other supported technologies include Tomcat, Zookeeper and
Kafka. Nonetheless, the chosen approach with Chef and the
ESB allows an easy integration of new technologies for the
batch/speed layer and data stores.

D. Application deployment

Applications for the Tengu platform typically exist of
several combinations of batch jobs and speed jobs, more
specifically in the current setup of the Tengu platform, these
are Hadoop MapReduce jobs and Storm topologies. For the

application’s UI, Tengu currently provides an Apache Tomcat
Server and the application’s specific meta data can be stored in
a separate data store. Exactly which components are required
is application specific, but to ease the setup of the actual
application components, Tengu uses Chef to assist the exper-
imenter. Consequently, the platform can be easily extended
with all software components already provided through Chef’s
Supermarket 7.

The actual resources that are used by Chef to deploy
the necessary application specific software components are
part of the OpenStack private cloud set up in Tengu. This
means that Chef will create a new virtual machine on the
OpenStack cluster and also deploys the correct cookbooks and
recipes on this virtual machine. The method of using a virtual
environment for application specific resources opens up a lot
of possibilities towards multi-tenancy, resource management
and optimization, resource isolation, and automation.

IV. USE CASE

The AMiCA (Automatic Monitoring for Cyberspace Appli-
cations) project aims to mine relevant social media (blogs, chat
rooms, and social networking sites) and collect, analyse, and
integrate large amounts of information using text and image
analysis. The ultimate goal is to trace harmful content, contact,
or conduct in an automatic way. Essentially, a cross-media
mining approach is taken that allows to detect risks ”on-the-
fly”. When critical situations are detected (e.g. a very violent
communication), alerts can be issued to moderators of the
social networking sites.

The AMiCA project leverages the Lambda architecture
using the speed layer to get near real-time feedback on
developing situations on the Social Network Site (SNS), while
the batch layer provides specific views on the entire history of
the site. In this use case an example chat conversation between
two generic users of a generic SNS is used.

The big data set of the SNS contains the entire history
of the relationship of these two users, including their chat
conversations. During the execution of the batch layer, the
speed layer provides an analysis of the most recent incoming
chat messages since the batch layer started its execution. It is
clear that the speed layer does not have access to any other
messages of the conversation other than the message provided
at that specific moment in time. This limits the analytical
power of the speed layer, but it can still provide some valuable
feedback in terms of language used, picture or video/audio
analysis [8], [9]. The information retrieved from this limited
analysis is used in two ways. Firstly, querying the results
requires an intelligent aggregation of the information in both
the batch and speed view. For example, a single aggressive
comment might not mean anything if the relationship has not
shown any or limited signs of aggression in the past. However,
when this fits into a relationship of repeated aggression,
additional steps need to be taken (e.g. blocking the account of
the aggressor). Secondly, in extreme cases (e.g. very violent

7https://supermarket.chef.io/

Fig. 3. Screenshot of the JFed GUI showing an instantiation of Tengu

language or graphics) the information immediately triggers an
alert for the moderators of the SNS.

The other partners in this project provide components for
text, image or video analysis and do not need a thorough
knowledge of the setup and deployment of big data analysis
frameworks. The Tengu service platform allows them to set up
these frameworks for their short and long term experimenting
needs.

V. DEMO

The demo of the Tengu platform illustrates the ease of
use for the setup of the platform and a comparison of the
use case application running on a Tengu setup with varying
cluster sizes. Figure 3 shows the JFed GUI which allows for an
easy interaction with all the resources of the Tengu platform
once it has been instantiated. JFed is also responsible for the
authentication and of experimenters on the different testbeds
in the Fed4FIRE federation. The Tengu platform deployed in
Figure 3 utilizes resources from the Virtual Wall, depicted in
Figure 4.

In the demo Tengu setups with different cluster sizes of both
batch and speed layer are deployed on the Virtual Wall. With
experiments running on these different setups, several key
points of interest are highlighted, such as number of messages
processed per minute in the batch and speed layer, and number
of queries handled per minute. A clear seperation is made
between queries on batch views and speed views. The demo
also clearly shows the possibility of experiment repeatability
and reproducibility even though in between tests the nodes of
the Virtual Wall are released for other experiments.

The next step is to dynamically increase the cluster size of
any depending technology. While some preliminary tests have
already been conducted dynamically increasing the size of the
Hadoop cluster, this functionality has yet to be integrated into
the Tengu platform and is therefore part of future work. This
requires a monitoring framework within the platform, which
could also provide statistics about application performance to

Fig. 4. The iLab.t Virtual Wall facility

the experimenters. Additionally, these performance statistics
could also contain valuable information regarding the views
and/or data stores: if a certain view/data store is no longer
performing well relative to certain performance constraints, a
transformed as described in Section II-A2 could be automati-
cally initiated.

VI. RELATED WORK

This Section discusses related work, similar setups and their
main differences with the Tengu platform.

Many big data analysis frameworks are already offered as
a service by the large cloud providers such as Amazon 8,
Google 9 and Microsoft 10. These frameworks are tightly
integrated within their platform environment giving customers
access to many other services as well for storage, networking,
and elastic scaling among others. They do however often
require application developers to adopt the in-house tech-
nologies, creating a vendor lock-in. Once embedded in the
ecosystem, moving to another provider would require a large
investment of time and resources. Tengu eliminates this vendor
lock-in by using open source technologies that are already
available in both research and industry. Moreover, the ESB
middleware, shielding an application from its data store(s),
and the live data store transformation limit application changes
altogether.

HPPC Systems [10] offers a massive open source parallel
computing platform that is also built around the principles
of the Lambda architecture. They have a dedicated batch
and serving layer, called Thor and Roxie respectively. Their
speed layer is built up from several components from Thor
and Roxie combined with an Apache Kafka consumer plugin.
They furthermore allow for incremental updates of views
through a concept of superfiles and superkeys. While HPCC
Systems provides an interesting approach to big data analysis

8http://aws.amazon.com/elasticmapreduce/
9https://cloud.google.com/appengine/docs/python/dataprocessing/
10http://azure.microsoft.com/en-us/documentation/services/hdinsight/

through the Lambda architecture, the Tengu platform aims
to bundle existing technologies, integrated in research and
industry, while every the specific combination of technologies
is tailored to every application. The WSO2 ESB is the core of
the Tengu platform and a necessary part of every setup, but
in doing so technologies for batch/speed layer, data stores or
other cloud technologies are not fixed. This also preserves the
platform-agnostic idea of the Lambda architecture.

With the large amount of SQL and NoSQL data stores,
persistence frameworks are trying to eliminate the complexity
of these different technologies by creating an abstract layer on
top of the data stores. Examples like Hibernate ORM/OGM 11,
PlayORM 12 and Kundera 13 have already found their way
into many projects. Through a unified querying language
and schema all supported data stores can be queried. The
application is shielded from the complexity of the different
data stores but in most cases the querying and schema lan-
guage are newly introduced languages by the developers of
the persistence framework. Tengu again introduces no new
querying language for the communication with the data stores
as many developers are already familiar with one or more
data stores. The application can use the querying language and
schema representation it is most familiar with, the continuous
transformation in the speed layer will transform these queries
into the querying language of the actual data store. This also
allows for experimenters to easily try out new data stores and
evaluate what this could mean for their applications.

VII. CONCLUSION AND FUTURE WORK

This paper presented the Tengu platform, a new experi-
mentation platform part of the Fed4FIRE federation. It allows
for the automatic setup and deployment of different big data
analysis frameworks, SQL/NoSQL data stores and other cloud
technologies.

As mentioned in Section IV, the Tengu platform still re-
quires a service that can autonomously decide to rescale the
clusters of the different technologies (analysis frameworks and
data stores). This requires a monitoring system tracking the
performance of all the clusters. The monitoring information
could also prove valuable for deciding when to transform
between data stores: when the query response time in a certain
data store no longer meets the requirements, a transformation
to a more appropriate data store. Finally, this monitoring infor-
mation could be relayed to the users directly as well, providing
them with detailed information about the performance of their
entire application.

While the RESTful API currently returns all important
links to the different technologies, in the future it would be
interesting to include an automated application deployment.
Users would then be able to pass a bundle of their entire
application to the service, which would then be deployed on
the various parts of the Tengu core platform.

11http://hibernate.org/
12http://buffalosw.com/wiki/playorm-documentation/
13https://github.com/impetus-opensource/Kundera

ACKNOWLEDGMENT

This work was partly carried out with the support of
the Fed4FIRE project (”Federation for FIRE”), an integrated
project funded by the European Commission through the
7th ICT Framework Programme (318389), and the AMiCA
(Automatic Monitoring for Cyberspace Applications) project,
funded by IWT (Institute for the Promotion of Innovation
through Science and Technology in Flanders) (120007).

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, pp. 107–113, Jan. 2008.

[2] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica,
“Spark: Cluster computing with working sets,” in Proceedings of the 2Nd
USENIX Conference on Hot Topics in Cloud Computing, HotCloud’10,
(Berkeley, CA, USA), pp. 10–10, USENIX Association, 2010.

[3] J. Gama, Knowledge Discovery from Data Streams. Chapman &
Hall/CRC, 2010.

[4] R. Cattell, “Scalable SQL and NoSQL Data Stores,” SIGMOD Rec.,
vol. 39, pp. 12–27, May 2011.

[5] N. Marz and J. Warren, Big Data: Principles and best practices
of scalable realtime data systems. Greenwich, CT, USA: Manning
Publications Co., 2014. (Early Access Program).

[6] T. Vanhove, G. Van Seghbroeck, T. Wauters, and F. De Turck, “Live
Datastore Transformation for optimizing Big Data applications in Cloud
Environments,” in Proceedings of the 2015 IEEE/IFIP International
Symposium on Integrated Network Management (IM 2015), may 2015.

[7] T. Wauters, B. Vermeulen, W. Vandenberghe, P. Demeester, S. Taylor,
L. Baron, M. Smirnov, Y. Al-Hazmi, A. Willner, M. Sawyer, et al.,
“Federation of internet experimentation facilities: architecture and imple-
mentation,” in European Conference on Networks and Communications
(EuCNC 2014), pp. 1–5, 2014.

[8] B. Desmet and V. Hoste, “Recognising suicidal messages in dutch
social media,” in Proceedings of the Ninth International Conference on
Language Resources and Evaluation (LREC’14), (Reykjavik, Iceland),
European Language Resources Association (ELRA), may 2014.

[9] B. Verhoeven, J. Soler Company, and W. Daelemans, “Evaluating
content-independent features for personality recognition,” in Proceed-
ings of the 2014 ACM Multi Media on Workshop on Computational
Personality Recognition, WCPR ’14, (New York, NY, USA), pp. 7–10,
ACM, 2014.

[10] A. M. Middleton, “Introduction to HPCC (High-Performance Computing
Cluster).” White Paper, may 2011.

