
IEICE TRANS. COMMUN., VOL.E99–B, NO.2 FEBRUARY 2016
297

INVITED PAPER Special Section on Management for the Era of Internet of Things and Big Data

Managing the Synchronization in the Lambda Architecture for
Optimized Big Data Analysis

Thomas VANHOVE†a), Student Member, Gregory VAN SEGHBROECK†, Tim WAUTERS†,
Bruno VOLCKAERT†, Nonmembers, and Filip DE TURCK†, Member

SUMMARY In a world of continuously expanding amounts of data,
retrieving interesting information from enormous data sets becomes more
complex every day. Solutions for precomputing views on these big data
sets mostly follow either an offline approach, which is slow but can take
into account the entire data set, or a streaming approach, which is fast but
only relies on the latest data entries. A hybrid solution was introduced
through the Lambda architecture concept. It combines both offline and
streaming approaches by analyzing data in a fast speed layer first, and in
a slower batch layer later. However, this introduces a new synchronization
challenge: once the data is analyzed by the batch layer, the corresponding
information needs to be removed in the speed layer without introducing
redundancy or loss of data. In this paper we propose a new approach to im-
plement the Lambda architecture concept independent of the technologies
used for offline and stream computing. A universal solution is provided
to manage the complex synchronization introduced by the Lambda archi-
tecture and techniques to provide fault tolerance. The proposed solution is
evaluated by means of detailed experimental results.
key words: Lambda architecture, synchronization, big data, Tengu

1. Introduction

Our digital universe is continuously expanding and pre-
dicted to contain 40 ZB (1 Zettabyte = 1 billion Terabyte) of
data by the year 2020 [1]. Retrieving valuable information
from these data sets through conventional methods becomes
nearly impossible if time constraints apply. Moreover, most
of these data sets consist of unstructured data, making the
processing even more complex. A popular approach in the
big data domain is to precompute views with big data pro-
cessing technologies and let applications or users query this
view instead of the entire data set. An important distinc-
tion is made in semantics: the entries in the original big
data set are referred to as data, whereas the entries in the
precomputed views are referred to as information [2]. In-
formation is thus derived from data through the algorithms
implemented in big data processing technologies.

These technologies can be divided in two types: batch
processing, and stream processing. The best known batch
processing approach is Map-Reduce, originally developed
by Google [3], but made popular by its open-source imple-
mentation in Apache Hadoop [4]. Other popular solutions
include Spark [5] and Flink [6]. The stream processing on
the other hand, satisfies the processing needs of applica-

Manuscript received August 20, 2015.
Manuscript revised October 21, 2015.
†The authors are with the Department of Information Technol-

ogy (INTEC), Ghent University - iMinds, Belgium.
a) E-mail: thomas.vanhove@intec.ugent.be

DOI: 10.1587/transcom.2015ITI0001

tions that generate data streams, such as sensor networks,
social media, and network monitoring tools [7]. While batch
processing analyzes an entire data set, stream processing
does the analysis on a message to message basis. Impor-
tant streaming analysis frameworks are Storm [8], S4 [9],
and Samza [10].

The power of batch processing comes from the abil-
ity to access an entire data set during the computation, e.g.
creating the opportunity for the detection of relations in the
data. The drawback of batch processing is that all resulting
information only becomes available after the execution is
complete. This process can take hours or even days during
which recent data is not taken into account. While stream
processing lacks the overview of batch processing, it does
allow for a (near) real-time analysis of data as it arrives in
the system. The Lambda architecture is built upon a hybrid
concept where during a batch analysis execution, in a batch
layer, newly arriving messages are analyzed by a stream
analysis technology, or speed layer [2]. This effectively har-
nesses the power of both approaches, giving an application a
complete historic informational overview through the batch
layer, stored in batch views, and (near) real-time informa-
tion through its speed layer, stored in speed views. As soon
as data is processed in the batch layer, the information is
stored in a batch view and the corresponding information is
removed from the speed view.

The Lambda architecture is clearly a very powerful
concept, but it does pose several implementation challenges.
First, as information is stored in two different views, the syn-
chronization between batch and speed layer is key to provid-
ing applications and/or users with the correct information. If
this is overlooked or ill-handled, information could be lost
or redundantly stored for a period of time. Second, stor-
ing information across different data stores leaves the system
in a state of polyglot persistence, creating the need for the
aggregation of information from both the batch and speed
views every time a query is sent by the application or users.

This paper proposes a general implementation of the
Lambda architecture concept without dependencies on the
technologies used in the batch/speed layers or views. A
proof of concept has been implemented as part of the Tengu
platform, formerly known as Kameleo [11]. The paper fo-
cuses on providing a generic solution for the synchroniza-
tion challenges that arise during the implementation of the
concept, but also proposes a solution for the aggregation
challenge.

Copyright c© 2016 The Institute of Electronics, Information and Communication Engineers

298
IEICE TRANS. COMMUN., VOL.E99–B, NO.2 FEBRUARY 2016

The remainder of this paper is structured as follows:
Section 2 discusses the Lambda architecture in depth. In
Sect. 3 the synchronization challenge is discussed in detail
and a solution is proposed. Section 4 explains how the sys-
tem handles failures in the different layers. The implemen-
tation of the synchronization solution is detailed in Sect. 5.
The experimental setup and results are provided in Sect. 6.
In Sect. 7 initial steps are detailed towards a solution for the
aggregation of polyglot persistent views. Finally, the con-
clusions are presented in Sect. 8.

2. Lambda Architecture: Overview and Challenges

The aim of each data system is to answer queries for appli-
cations or users on the entire data set. Mathematically, this
can be represented as follows [2]:

query = f unction(all data)

While in the era of Relational Database Management Sys-
tems (RDBMS) it was still possible to query the entire data
set in real time, this is no longer the case with big data
sets [12]. Therefore, in big data analysis systems queries are
already partially precomputed and stored in views to limit
the applications’ query latency. Expressed in terms of func-
tions, this gives us the following:

view = f unction(all data)

query = f unction(view)

It is here that Marz also makes a distinction between data
and information [2]. Data is the rawest information from
which all other information is derived and is perceived to be
true within the system, in this case the main big data set. A
big data system thus becomes the function that analyzes data
through a programmed algorithm and stores the resulting in-
formation in a view. Queries thus no longer access data, but
information stored inside views. According to Marz, these
big data systems need to achieve several properties:

• Robustness and fault tolerance: a data system needs
to behave correctly even in the event of software, ma-
chine, but also human failures.
• Low latency reads and updates: data or information

needs to be available when an application or user needs
it.
• Scalability: a data system needs to maintain a stable

performance with increasing or decreasing load.
• Generalization: a data system needs to be applicable

to a wide range of applications.
• Extensibility: the potential to add functionality with a

minimal cost.
• Ad hoc queries: unanticipated information in a data

set needs to be accessible.
• Minimal maintenance: limit the implementation

complexity of the components.
• Debuggability: a data system needs to provide infor-

mation allowing to trace how output was construed.

Fig. 1 Conceptual overview of the Lambda architecture.

The Lambda architecture is built in layers each satisfying a
subset of these properties.

As stated before, a big data system precomputes views
on a big data set to reach reasonable latency query times.
This is achieved by the first layer of the Lambda architec-
ture: the batch layer. The results of the batch layer are stored
in batch views, managed by the serving layer. Most of the
above-stated properties are already fullfilled by these two
layers. The final property, concerning the low-latency reads
and updates, is accomplished with the final layer: the speed
layer†. It provides the analysis of data as soon as it enters
the system and stores it in a speed view. Queries by appli-
cations or users then combine the information that is stored
in the batch and speed view. A query on a big data set, ana-
lyzed by the Lambda architecture, can thus be described as
follows:

batch view = f unction(all data)

speed view = f unction(speed view, new data)

query = f unction(batch view, speed view)

Figure 1 gives a conceptual overview of all the above dis-
cussed layers of the Lambda architecture.

The batch layer thus continuously recomputes the main
big data set, which in time grows, causing the execution time
to increase accordingly. This execution time can be limited
by using an incremental function to compute the batch view:

batch view = f unction(batch view, new data)

However, in order to guarantee the robustness and fault tol-
erance, a recomputational algorithm needs to always exist.

As soon as data is processed by the batch layer, the de-
rived information that will be stored in a batch view has a
duplicate in the speed view. The corresponding information
in the speed view thus needs to be removed to make sure no
redundant information is present in the system. While this
keeps the data store for the speed views relatively small, i.e.
it only contains the most recent information of the system, it
does expose a critical part of the system. If the synchroniza-
tion between batch and speed layer is incorrect, the entire
system is vulnerable to missing or redundant information.

†This layer is called the real time layer by Marz, but in prac-
tice it is often more near real time than true real time. To avoid
confusion, in this paper it is referred to as the speed layer.

VANHOVE et al.: MANAGING THE SYNCHRONIZATION IN THE LAMBDA ARCHITECTURE FOR OPTIMIZED BIG DATA ANALYSIS
299

Marz suggests to maintain two sets of speed views and al-
ternately clearing them, which introduces redundancy. This
paper proposes a general solution in Sect. 3 without infor-
mation redundancy.

A second challenge arises with the final function to an-
swer a query:

query = f unction(batch view, speed view)

To answer a query, information from both the batch and
speed view is needed. The idea where applications store
their information in a mix of data stores to take advantage
of the fact that different data stores are suitable for stor-
ing different information, is referred to as polyglot persis-
tence [13]. Support for polyglot persistent applications is
still a very active research topic [14], [15]. Initial steps to-
wards a general solution for the aggregation challenge in the
Tengu platform are disclosed in Sect. 7.

While the Lambda architecture is regarded as a promis-
ing concept in both academia [16], [17] and industry [18],
[19], some critique is expressed as well [20]. Kreps points
out that maintaining two code bases (for batch and speed
layer) is a complex and painful issue. While this is true in
some form, their proposed alternative, the Kappa architec-
ture, limits the information that can be retrieved from the big
data set. This new proposal eliminates the batch layer and
only uses the speed layer to analyze the entire data set mes-
sage by message. However, this way an algorithm can no
longer benefit from an overview of the entire data set. For
example, suppose an application analyzes the chat messages
between social network users for the detection of cyber bul-
lying [21]. In the speed layer a message is analyzed on its
own, but in the batch layer a more accurate analysis is pos-
sible because the algorithm has the context of the entire chat
history. In the next sections a solution for the synchroniza-
tion challenge in the Lambda architecture is given without
compromising on the information stored in the views.

3. Synchronization

The most important aspect of the synchronization between
the batch and speed layer happens when the batch layer fin-
ishes its computation. A delicate operation follows where
the soon to be redundant data needs to be removed from the
speed view before it is entered in the batch view. If too much
information is removed from the speed view, the system en-
ters a temporary state with missing information. If too little
information is removed, the system enters a temporary state
where redundant data is processed in the queries. Both states
are temporary, because it is fixed after another execution of
the batch layer algorithm, although other information might
then be missing or redundant.

Nathan Marz proposes a solution where two paral-
lel speed views are used to store the most recent informa-
tion [2]. As he points out, this leaves the system in a re-
dundant state, but it is considered to be an acceptable price
for a general solution. The goal of this paper is to design
a general solution without redundancy or information loss.

In order to do so, a precise answer is needed to the follow-
ing question: which information needs to be deleted once
a batch layer run has finished? The system thus needs to
know which data was processed by the batch layer and what
the corresponding information is in the speed view.

The proposed approach is as follows: tagging data as
soon as it enters the system allows for this traceability of
when the data entered the system, and thus what correspond-
ing information can be removed. As soon as data arrives, it
is tagged by a current tag Tn. The data is stored with the big
data set, but still marked with the tag Tn. It is also analyzed
by the speed layer, which stores the resulting information
in a view specifically for all information with the tag Tn,
(speed view)Tn. As soon as the batch layer finishes its cur-
rent execution, the following happens: the system switches
to a new tag T(n+1) for all new incoming data. The informa-
tion, resulting from the batch layer execution, is pushed into
the batch view. The corresponding information in the speed
view can be easily cleared with the tag that came before Tn,
(speed view)T (n−1). Then the new batch data set becomes the
union of all data with the Tn tag, dataTn, and the previous
batch data set:

batch data = dataTn ∪ batch data (1)

At this point, the batch layer starts a new execution and
the entire walkthrough described above is repeated. Similar
to the solution proposed by Marz, parallel speed views are
used, but now clearly marked with a tag that marks the infor-
mation that is contained within them as to avoid redundant
or missing information. A query now becomes:

query = f unction(batch view, (speed view)T (n), ...,

(speed view)T (n−i))

(2)

Figure 2 depicts the lifetime of different events and ser-
vices in relation to each other in a normal running Lambda
architecture implementation. The directional line on top
represents the time moving from left to right. The batch
layer execution time is portrayed by the dashed line. The
dotted tagger line shows which tag is given to a new mes-
sage that enters the system at a given time. Finally, the life-
time of the speed views is represented by solid lines and the
name of the tag it stores. The sequence clearly shows how a
speed view exists for two batch runs before being cleared.

Figure 2 also shows two atomic points that will need to
be addressed in the implementation:

1. Batch view update - speed view clearance: during
this operation the system is vulnerable for responding
to queries with redundant or missing information. If
a query were to enter the system between the update
of the batch view and the clearance of the correspond-
ing information in the speed view, the response of the
query will contain redundant or missing information,
depending on the order of the previously mentioned op-
erations.

300
IEICE TRANS. COMMUN., VOL.E99–B, NO.2 FEBRUARY 2016

Fig. 2 Synchronization timeline of the different layers. Two important atomic points are identified:
1) batch view update - speed view clearance 2) tag switching.

2. Tag switch: a message cannot enter the system while
no or multiple tags are active. If a message is not
tagged, the system will ignore it and data is lost. If
a message is tagged multiple times with different tags,
redundant data is introduced into the system.

Important to note is the difference in impact both points
have: the tag switch concerns data, while the update/clear-
ance works in the context of information. Recovering a sys-
tem from faulty information is possible through a complete
recomputation of the data set. However, recovering from
faulty data is a whole lot more complex since all derived
information is false as well.

Note that in this section no assumptions have been
made as to which technologies are used to implement the
proposed tagging solution. Tagging can be implemented in
different ways: a tag can be directly inserted into a mes-
sage or it can be indirectly associated with the message. The
proof of concept of the tagging solution for the synchroniza-
tion challenge uses the indirect approach and is presented in
Sect. 5.

4. Failure Handling

An important property of a big data system is its robustness
and fault tolerance as outlined in Sect. 2 above. In the fol-
lowing subsections failure scenarios of the different parts of
the platform are discussed and how they can be handled.

4.1 Batch Layer Failures

If the execution of the batch layer fails, there are several
possibilities to handle the failure. First, a simple restart of
the execution can be done with the same data set as before.

Fig. 3 Batch layer failure handling.

The batch and speed view still contain the correct informa-
tion for applications and users, and the current tag needn’t
change. A repeatedly failing algorithm does require human
intervention as the cause might be a faulty implementation.

A second possibility is to handle the failure similar to
a correct end of the batch layer: a new tag is used to tag fu-
ture incoming messages, but the previous tags are not wiped
from the speed view as they were not yet analyzed by the
batch layer. Otherwise this would cause temporary infor-
mation loss. Data tagged with the previous tags is added
to the data set that will be analyzed by the batch layer. In
other words, while the batch layer needs to restart, the data
set is expanded to take into account more recent data. This
method is limited in the number of failures it can handle due
to the increasing number of concurrent tags and the possi-
bility of an overflow of the tag value. As with the previous
method, the information in the batch and speed views re-
mains available for applications and users. Figure 3 depicts
this method of failure handling for the batch layer. The proof
of concept, detailed in Sect. 5, handles a batch layer failure
with a simple restart.

VANHOVE et al.: MANAGING THE SYNCHRONIZATION IN THE LAMBDA ARCHITECTURE FOR OPTIMIZED BIG DATA ANALYSIS
301

4.2 Speed Layer Failures

A failure of the speed layer has less impact on the entire
data system compared to a batch layer failure because the
information displayed in the speed view is only a fraction of
the total data set. That being said, the goal is to eliminate
redundant and missing information completely.

Failure handling is mostly dependent on how a stream-
ing big data analysis platform handles the failures. If the
analysis of one message fails, it is important the chosen
technology has guaranteed message processing or check-
pointing, i.e. each data message is fully processed without
fault. If an entire machine or cluster fails, data in transit
should be recovered or re-analyzed. For example, in an im-
plementation with Kafka and Storm, Storm provides guaran-
teed message processing, but it also needs to keep an offset
of messages it already consumed from Kafka. Both tech-
nologies combined can therefore recover from a variety of
failures.

4.3 View Failures

A view failure results in partial information not being avail-
able for applications and users. A failure of the speed view
has a limited impact as it only contains the most recent infor-
mation of the system, while a failure of the batch view would
cause most of the historical information to be unavailable.
Therefore, it is important to use distributed and replicated
data stores for the views of both layers. In the NoSQL (Not
Only SQL) domain most data stores are of a distributed na-
ture and support some form of replication. The amount of
replicas depends on the critical nature of the application. A
careful consideration is required in this trade-off between
storage cost and availability.

While a view failure can cause a temporary unavail-
ability or redundancy of information, the layered approach
of the Lambda architecture allows the system to recover
without human intervention. A recomputational algorithm
in the batch layer always starts with the original main data
set, meaning errors in a batch or speed view are overruled in
the next iteration. This property is shown extensively in the
results in Sect. 6.

4.4 Data and Communication Failures

Query latency In Sect. 3 it was mentioned that the operation
updating the batch view and deleting the corresponding in-
formation in the speed views needs to be atomic. During this
time a read lock needs to be enforced on the different views
as to insure no missing or redundant information is used to
answer the query. If an error occurs during one of the steps
in the operation, a rollback can make sure the views are not
corrupted.

Equation (2) also defines a query in the Lambda ar-
chitecture as a function that aggregates data from different
views. Both the read lock and the aggregation will cause a

certain query latency.
Tagging The impact of missing or redundant data compared
to information was already briefly discussed in Sect. 3. An
error in the tagging or switch between tags could cause this
missing or redundant data. Recovery from such a failure en-
tails much more than an information failure and the system
will be unable to recover from this without manual interven-
tion.
Data persistence Finally, data persistence is an important
feature to make sure no data or information is lost. For ex-
ample, assume a message is the last message to be tagged
with tag Tn. All the dataTn needs to be merged with the
previous batch data set, as defined in Eq. (1). There needs
to be a guarantee that all data with tag Tn is present in
dataTn, i.e. even the last message to be tagged with Tn

needs to be present and not get lost in the network. This is
closely related to guaranteed message processing discussed
in Sect. 4.2.

4.5 Human Failure

A final important failure is the realistic possibility that a hu-
man error will occur in the system. Here the importance
of the main data set is again featured. The main data set
contains unaltered data and is expected to be true, within
the Lambda architecture system. This assumption allows
the system to recover from any human error in the differ-
ent layers. For example, if a faulty implementation in any
layer causes faulty information to be stored in the views, a
fix of the faulty code allows the entire system to recover af-
ter a couple of iterations. This emphasizes the need for a
re-computational algorithm in the batch layer. While an in-
cremental batch algorithm can be used to limit the execution
time of the batch layer, a re-computational algorithm needs
to exist to recover from human-introduced errors, such as
faulty implementations.

5. Implementation Details

The proposed Lambda architecture implementation is im-
plemented as part of the Tengu platform, previously known
as Kameleo [11]. The Tengu platform was originally de-
veloped for the automated setup of big data technologies on
experimental testbeds. Figure 4 shows an overview of all
used technologies in the proof of concept implementation
and how they are chained together.

Fig. 4 Technology overview of the implemented Lambda architecture
proof of concept.

302
IEICE TRANS. COMMUN., VOL.E99–B, NO.2 FEBRUARY 2016

The first technology a message encounters when it en-
ters the system is the WSO2 Enterprise Service Bus (ESB).
It allows for advanced communication between services by
routing messages in a bus architecture using a vast array of
protocols. For this reason the ESB was favored over a Mes-
sage Broker (MB) or a Complex Event Processor (CEP) as
those would limit the amount of control the system had over
the messages and services. The WSO2 ESB was chosen
over other candidates, such as UltraESB, Mule, and Talend,
for its performance and maturity [22]–[24]. It is the intel-
ligent controller-like component that coordinates the execu-
tion of the different services, i.e. the batch and speed layer,
and their views. The ESB also maintains the current active
tag corresponding to an active topic in Apache Kafka [25].

After retrieving the tag in the ESB, the message is sent
to a Kafka topic corresponding to the received tag. The tag
is hence never attached to the incoming message, but indi-
rectly associated with the message through a topic in Kafka.
From this topic the message is ingested by a speed technol-
ogy, analyzed and stored in a speed view. In the proof of
concept Storm [8] is used as a speed technology, while the
speed views are stored in MongoDB [26]. Storm contains
a topology that is responsible for a specific tag, i.e. a Kafka
topic. This topology analyzes the messages and stores them
in the MongoDB collection related to the tag. The union de-
fined in Eq. (1) is performed using all data in the Kafka topic
as dataTn. The batch layer, implemented with Hadoop [4]
in this proof of concept, performs an analysis and stores the
information in a batch view, a specific collection in Mon-
goDB.

Important to note is that the implementation of the tag-
ging system is done by the WSO2 ESB and Kafka. While
Hadoop, Storm and MongoDB are used in this proof of con-
cept, they are merely services of the ESB through which
the messages are analyzed and stored. As a consequence
they can be replaced by similar technologies such as Spark,
Samza and Cassandra. Additionally, many technologies can
already act as a consumer of Kafka messages, but if not, an
extension of the WSO2 ESB can still provide the necessary
communication.

In Fig. 2 two critical points were also identified con-
cerning the update of the batch view and simultaneous re-
moval of the corresponding information in the speed view,
and the switch between active tags. Both operations are re-
quired to be atomic to prevent data/information loss or re-
dundancy.

The tag is stored local to and managed by the ESB,
making every operation transactional. For each message the
ESB reads the value of the tag and sends the message to the
corresponding topic. If a call is made to change the tag, the
value is updated with an atomic operation. A message can
therefore never continue without a tag or with multiple tags.

The switch between views after a completed batch
layer iteration is handled by inserting a read lock on the
views. This can cause somewhat of a query latency if a
query is on hold during the switch. A solution for this la-
tency can be to cache the information during the transition,

but this is outside the scope of this paper and considered part
of future work.

6. Evaluation Results

The Tengu platform is deployed on the iLab.t Virtual Wall
infrastructure [27]. These experimental testbeds consist of
over 300 nodes spanning different generations of hardware
setups. For the tests in this paper generation 3 nodes were
used: 2x Hexacore Intel E5645 (2.4 GHz) CPU, 24 GB
RAM, 1x250 GB harddisk, 1-5 gigabit nics. Eight nodes
were used in the following setup interconnected with a 1
Gigabit connection:

• 2 hadoop nodes
• 2 storm nodes
• 1 WSO2 Enterprise Service Bus node
• 1 MongoDB node
• 1 Zookeeper node
• 1 Kafka node

In the following subsection the results are detailed to show
the correctness and regenerative capabilities of the Lambda
architecture implementation, especially in the context of in-
formation redundancy and information loss. Next, insight is
given as to where information is stored among the different
views in a normal run of the system.

6.1 View Failure

The most important part of the synchronization challenge
consists of eliminating redundant information and informa-
tion loss. The first results in Fig. 5 show the normal progress
of data sizes in the Lambda architecture. For each tag 20
messages were injected into the system through a REST
API, one every second, where each message had a specific
value. The WSO2 ESB supports a variety of message for-
mats but for this test JSON messages were used:

Fig. 5 Normal progress of the active Lambda architecture implementa-
tion.

VANHOVE et al.: MANAGING THE SYNCHRONIZATION IN THE LAMBDA ARCHITECTURE FOR OPTIMIZED BIG DATA ANALYSIS
303

Fig. 6 Regenerative progress of the active Lambda architecture imple-
mentation with data loss in views.

{
‘ va lue ’ : ‘5 ’

}
The algorithm in the batch and speed layer were tasked with
calculating the total sum of the message values. The dashed
line shows the sum of all message values injected in the
system at any given point. The solid line shows the aggre-
gated sum that is available in all the views, both batch and
speed. The sum calculation in the speed layer is slowed as
to clearly differentiate the two graph-lines from each other.
As can be seen in Fig. 5 the solid line can never drop down,
as this would indicate information loss, or be higher than the
dashed line, as this would indicate information redundancy.

Information loss in the views is introduced in the sec-
ond graph, depicted in Fig. 6. Loss is introduced twice in the
speed view at around 65 and 165 seconds. The regenerative
property of the Lambda architecture is shown at around 115
seconds and 215 seconds. This is when the batch layer has
recomputed the main data set and the lost information is re-
stored in the batch view.

Figure 7 shows the regenerative measures of the imple-
mentation after redundancy is introduced to the speed views.
The solid line clearly surpasses the dashed line in the graph,
indicating the presence of information redundancy. The re-
dundancy is however not present in the main data set, mean-
ing that after a batch iteration the redundant information is
deleted from the views, again displaying the correct total
sum.

Both graphs clearly show the regenerative capabilities
of the implemented Lambda architecture in situations with
varying information inconsistencies. The time in which the
system returns to a consistent state depends on the execution
time of the batch layer. In Sect. 3, Fig. 2 illustrates that speed
views exist for two batch layer runs before being cleared,
meaning that in a worst case scenario an inconsistent state
is maintained during two batch layer runs before being re-
solved. The batch layer execution time can be shortened
through use of an incremental algorithm, but as mentioned
in Sect. 2 a re-computational algorithm is still required to

Fig. 7 Regenerative progress of the active Lambda architecture imple-
mentation with data redundancy in views.

Fig. 8 The total data in the Lambda architecture in time with respect to
the different views.

achieve fault tolerance and robustness. An inconsistent state
in the batch view can be resolved after one batch run, but
only with a re-computational algorithm.

6.2 Information Transition from Speed to Batch Views

As information is moved between different views a lot in the
Lambda architecture, the graph displayed in Fig. 8 shares
some insight as to where information is stored during a nor-
mal run of the Lambda architecture implementation. Impor-
tant to note is that messages are now continuously sent to
the system and have ever increasing values, hence the ex-
ponential curve of the total data sum. The speed layer is
also no longer slowed down in these tests. First, speed view
1, marked by the dotted line, is filled with information un-
til it reaches a plateau at around 25 seconds. This plateau
occurs as the Storm topology is swapped for a new topol-
ogy to start processing the new tag, i.e. ingest the new topic
from Kafka. Once the new topology is active at around 50
seconds, it quickly catches up to the total expected sum by

304
IEICE TRANS. COMMUN., VOL.E99–B, NO.2 FEBRUARY 2016

filling up speed view 2, indicated by the small dashed line,
until it reaches the next plateau. Again the Storm topologies
are switched, but speed view 1 is also cleared as the infor-
mation is now contained within the batch view, marked by
the dashed-dotted line. Now speed view 1 can again be used
to store information and the entire above described process
repeats itself. A maximum of two concurrent tags are thus
active at any given time.

Based on the graph in Fig. 8 some improvements can
be made: the plateau could be reduced by having two paral-
lel Storm topologies, as with the speed views. This has the
additional benefit that the old topology can continue gener-
ating information next to the new one. The single topology
setup of this proof of concept can cause additional delay
because the system waits for the topology to be entirely fin-
ished before swapping. For a simple task, like calculating a
sum, Storm is fast enough and no additional delay is caused,
but with more complex algorithms the time for data to be
processed by the topology increases, heightening the pos-
sibility of additional delay. In a production environment it
is therefore highly recommended to work with two parallel
Storm topologies.

7. Aggregation

In Sect. 2 a query in the Lambda architecture is defined as a
function over the different views. An application that stores
data or information in a mix of data stores to take advantage
of the fact that different data stores are suitable for storing
different data is referred to as a polyglot persistent applica-
tion [13]. While the work of Sadalage and Fowler focuses
on dividing the data set based on data type and/or model,
the polyglot persistence in the Lambda architecture splits
information based on time, derived from the tag the data got
when it entered the system. Both Eq. (2) and Fig. 1 show
the need for aggregation, as an answer to a query consists of
multiple queries to different data stores. The nature of the
aggregation depends on the nature of the information stored
in the views and the nature of the query. For example, two
integers can be added in a sum, but could equally well be
concatenated.

Data abstraction layers, such as Hibernate OGM [28],
Kundera [29], and DataNucleus [30], help applications with
polyglot persistence by providing general access to their
data stores, usually through a unified querying language. Al-
though these data abstraction layers shield applications from
underlying data storage technologies, they lack the ability to
intelligently combine information from several data stores
and return it. The application is thus still responsible for
combining information from the different views and not ef-
fectively protected from data model changes.

If this responsibility is to be moved away from the ap-
plication, it needs to be re-introduced in a new layer between
the application and the data stores. As mentioned before, the
nature of the aggregation is specific to the query the appli-
cation sends, so user input is required. However, users often
also lack the insight into the different technologies to cor-

Fig. 9 Lambda architecture with a formal language for the aggregation
of information.

rectly write the code for information retrieval. A definition
of the aggregation through a technology independent data
flow could prove to be a solution in this case.

A proposed approach is to define this data flow through
a formal language. The formal language would allow
users, lacking any programming skills or technology spe-
cific knowledge, to define an algorithm answering their
query through a flow of operations and other queries on the
different underlying data stores. Once an aggregation is cre-
ated through the formal language, an engine can translate it
into code and technology-specific queries for different data
stores. Figure 9 shows how the formal language fits in with
the Lambda architecture. Initial steps towards a definition
and implementation of this formal language are ongoing and
will be reported on in future work.

8. Conclusion and Future Work

The Lambda architecture is a powerful concept for big data
systems. However, it does pose several implementation
challenges. This paper proposes a general implementation
of the concept, independent of the technologies used for dif-
ferent layers and views. It focuses on a solution for the syn-
chronization challenge between the batch and speed layer
through a tagging system. A solution is proposed, tagging
messages when they enter the implemented Lambda archi-
tecture system, and a proof of concept is implemented in
the Tengu platform. Results show that the proof of con-
cept works correctly in regard to eliminating information
loss and redundancy, and that when manually introduced,
it is able to recover automatically. The information transi-
tion between batch and speed view also indicated a delay
where no new information was posted in the views during
the transition of topologies. A solution is suggested where
two parallel topologies exist in the Storm cluster.

Another challenge was identified as the aggregation of
information from batch and speed views to answer queries
from applications or users. This paper discusses the initial
steps that have already been taken towards a general solution
in the Tengu platform. The implementation itself will be
reported on in future publications.

VANHOVE et al.: MANAGING THE SYNCHRONIZATION IN THE LAMBDA ARCHITECTURE FOR OPTIMIZED BIG DATA ANALYSIS
305

Acknowledgement

This work was partly carried out with the support of the
AMiCA (Automatic Monitoring for Cyberspace Applica-
tions) project, funded by IWT (Institute for the Promotion
of Innovation through Science and Technology in Flanders)
(120007).

References

[1] J. Gantz and D. Reinsel, “The digital universe in 2020: Big data, big-
ger digital shadows, and biggest growth in the far east,” IDC iView:
IDC Analyze the Future, vol.2007, pp.1–16, 2012.

[2] N. Marz and J. Warren, Big Data: Principles and best practices of
scalable realtime data systems, Manning Publications, 2015.

[3] J. Dean and S. Ghemawat, “MapReduce: simplified data processing
on large clusters,” Commun. ACM, vol.51, no.1, pp.107–113, Jan.
2008.

[4] T. White, Hadoop: The definitive guide, O’Reilly Media, 2012.
[5] M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, and I.

Stoica, “Spark: Cluster computing with working sets,” Proc. 2nd
USENIX Conference on Hot Topics in Cloud Computing, Hot-
Cloud’10, Berkeley, CA, USA, p.10, USENIX Association, 2010.

[6] “Apache flink,” http://flink.apache.org/ (Last Visited Aug. 13, 2015).
[7] J. Gama, Knowledge Discovery from Data Streams, Chapman &

Hall/CRC Data Mining and Knowledge Discovery Series, Chapman
and Hall/CRC, 2010.

[8] “Apache storm,” https://storm.apache.org/ (Last Visited Aug. 13,
2015).

[9] L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, “S4: Distributed
stream computing platform,” 2010 IEEE International Conference
on Data Mining Workshops, pp.170–177, 2010.

[10] “Apache samza,” https://samza.apache.org/ (Last Visited Aug. 13,
2015).

[11] T. Vanhove, J. Vandensteen, G. Van Seghbroeck, T. Wauters, and
F. De Turck, “Kameleo: Design of a new platform-as-a-service for
flexible data management,” Proc. 2014 IEEE Network Operations
and Management Symposium (NOMS), pp.1–4, 2014.

[12] A. Jacobs, “The pathologies of big data,” Commun. ACM, vol.52,
no.8, pp.36–44, Aug. 2009.

[13] P.J. Sadalage and M. Fowler, NoSQL Distilled: A Brief Guide to the
Emerging World of Polyglot Persistence, Addison-Wesley, 2012.

[14] A. Maccioni, O. Cassano, Y. Luo, J. Castrejón, and G. Vargas-Solar,
“NoXperanto: Crowdsourced polyglot persistence,” Polibits, vol.50,
pp.43–48, 2014.

[15] S. Prasad and S.B. Avinash, “Application of polyglot persistence
to enhance performance of the energy data management systems,”
2014 International Conference on Advances in Electronics Comput-
ers and Communications, pp.1–6, 2014.

[16] W. Fan and A. Bifet, “Mining big data: Current status, and forecast
to the future,” ACM SIGKDD Explorations Newsletter, vol.14, no.2,
pp.1–5, 2013.

[17] S. Perera and S. Suhothayan, “Solution patterns for realtime stream-
ing analytics,” Proc. 9th ACM International Conference on Dis-
tributed Event-Based Systems, DEBS’15, pp.247–255, 2015.

[18] HPCC Systems, “Lambda architecture and HPCC systems,” White
Paper, Feb. 2014.

[19] “MapR,” https://goo.gl/SBdQEW (Last Visited Aug. 13, 2015).
[20] J. Kreps, “Questioning the lambda architecture,” Online article, July

2014. http://radar.oreilly.com/2014/07/questioning-the-lambda-archi
tecture.html (Last Visited Aug. 7, 2015).

[21] T. Vanhove, P. Leroux, T. Wauters, and F. De Turck, “Towards the
design of a platform for abuse detection in osns using multimedial
data analysis,” 2013 IFIP/IEEE International Symposium on Inte-
grated Network Management (IM 2013), pp.1195–1198, 2013.

[22] D. Abeyruwan, “ESB performance round 6.5,” Tech. Rep., WSO2,
Jan. 2013. http://wso2.com/library/articles/2013/01/esb-performanc
e-65/

[23] A.C. Perera and R. Linton, “ESB performance round 7,” Tech.
Rep., AdroitLogic, Oct. 2013. http://esbperformance.org/display/
comparison/ESB+Performance

[24] S. Anfar, “ESB performance round 7.5,” Tech. Rep., WSO2, Feb.
2014. http://wso2.com/library/articles/2014/02/esb-performance-rou
nd-7.5/

[25] N. Garg, Apache Kafka, Packt Publishing, 2013.
[26] K. Chodorow, MongoDB: the definitive guide, O’Reilly Media,

2013.
[27] “iLab.t virtual wall,” http://ilabt.iminds.be/ (Last Visited Aug. 13,

2015).
[28] “Hibernate OGM,” http://hibernate.org/ogm/ (Last Visited Aug. 13,

2015).
[29] “Impetus Kundera,” https://github.com/impetus-opensource/Kundera

(Last Visited Aug. 13, 2015).
[30] “DataNucleus,” http://www.datanucleus.org/ (Last Visited Aug. 13,

2015).

Thomas Vanhove obtained his mas-
ters degree in Computer Science from Ghent
University, Belgium in July 2012. In August
2012, he started his PhD at the IBCN (Intec
Broadband Communication Networks) research
group, researching data management solutions
in cloud environments. More specifically, he
has been looking into dynamic big data stores
and polyglot persistence. It was during that time
he created the Tengu platform for the simplified
setup of big data analysis and storage technolo-

gies on experimental testbeds.

Gregory Van Seghbroeck graduated at
Ghent University in 2005. After a brief stop
as an IT consultant, he joined the Department
of Information Technology (INTEC) at Ghent
University. On the 1st of January, 2007, he
received a PhD grant from IWT, Institute for
the Support of Innovation through Science and
Technology, to work on theoretical aspects of
advanced validation mechanism for distributed
interaction protocols and service choreogra-
phies. In 2011 he received his Ph.D. in Com-

puter Science Engineering.

http://dx.doi.org/10.1145/1327452.1327492
http://flink.apache.org/
http://dx.doi.org/10.1201/ebk1439826119
https://storm.apache.org/
http://dx.doi.org/10.1109/icdmw.2010.172
https://samza.apache.org/
http://dx.doi.org/10.1109/noms.2014.6838331
http://dx.doi.org/10.1145/1536616.1536632
http://dx.doi.org/10.17562/pb-50-6
http://dx.doi.org/10.1109/icaecc.2014.7002444
http://dx.doi.org/10.1145/2481244.2481246
http://dx.doi.org/10.1145/2675743.2774214
https://goo.gl/SBdQEW
http://radar.oreilly.com/2014/07/questioning-the-lambda-architecture.html
http://wso2.com/library/articles/2013/01/esb-performance-65/
http://esbperformance.org/display/comparison/ESB+Performance
http://wso2.com/library/articles/2014/02/esb-performance-round-7.5/
http://ilabt.iminds.be/
http://hibernate.org/ogm/
https://github.com/impetus-opensource/Kundera
http://www.datanucleus.org/

306
IEICE TRANS. COMMUN., VOL.E99–B, NO.2 FEBRUARY 2016

Tim Wauters received his M.Sc. degree
in electro-technical engineering in June 2001
from Ghent University, Belgium. In January
2007, he obtained the Ph.D. degree in electro-
technical engineering at the same university.
Since September 2001, he has been working in
the Department of Information Technology (IN-
TEC) at Ghent University, and is now active
as a post-doctoral fellow of the F.W.O.-V. His
main research interests focus on network and
service architectures and management solutions

for scalable multimedia delivery services. His work has been published in
about 50 scientific publications in international journals and in the proceed-
ings of international conferences.

Bruno Volckaert is a postdoctoral assis-
tant in the INTEC Broadband Communication
Networks group, which is a part of the De-
partment of Information Technology at Ghent
University. He obtained his Master of Computer
Science degree in 2001 from Ghent University,
after which he started work on his PhD. While
doing research on data intensive scheduling and
service management for Grid computing, he co-
developed, together with dr. Pieter Thysebaert,
NSGrid, an advanced ns-2 based Grid simulator,

detailed in full in his PhD: “Architectures and Algorithms for Network and
Service Aware Grid Resource Management”.

Filip De Turck leads the network and ser-
vice management research group at the Depart-
ment of Information Technology of the Ghent
University, Belgium and iMinds (Interdisci-
plinary Research Institute in Flanders). He (co-)
authored over 450 peer reviewed papers and
his research interests include telecommunica-
tion network and service management, efficient
big data processing and design of large-scale
virtualized network systems. In this research
area, he is involved in several research projects

with industry and academia, serves as vice-chair of the IEEE Technical
Committee on Network Operations and Management (CNOM), chair of the
Future Internet Cluster of the European Commission, and is on the TPC of
many network and service management conferences and workshops and
serves in the editorial board of several network and service management
journals.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

