Ensemble Methods for Personality Recognition

TitleEnsemble Methods for Personality Recognition
Publication TypeTalk
Year of Publication2013
AuthorsVerhoeven, B, Daelemans, W
Conference/Workshop/...Presented at ATILA 2013
Date Published26/09/2013
Place PublishedCorsendonck, Belgium

An important bottleneck in the development of accurate and robust personality recognition systems based on supervised machine learning, is the limited availability of training data, and the high cost involved in collecting it. In this paper, we report on a proof of concept of using ensemble learning as a way to alleviate the data acquisition problem. The approach allows the use of information from datasets from different genres, personality classification systems and even different languages in the construction of a classifier, thereby improving its performance. In the exploratory research described here, we indeed observe the expected positive effects.